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Abstract-The finite static deformations of thin-walled spheres and cylinders composed of general
compressible isotropic elastic material, under the action of applied steady internal pressure, are
investigated theoretically. The relation between applied pressure and deformed radius is obtained
in a simple parametric form. The results of Chung et al. (1986, Int. J. Solids Structures 22,1557
1570) are recovered for the model proposed by Blatz and Ko (1962, Trans. Soc. Rheol. 6. 223-251)
for polyurethane foam rubber, and the analysis is then applied numerically to the generalized Blatz
Ko model discussed by Willson and Myers (1988, Int. J. Engng Sci. 26, 509-517) and by Myers
(1988, Ph.D. Thesis, University of Leicester, U.K.).

I. INTRODUCTION

The elastic deformations of hollow spheres and cylinders under the action of imposed
steady internal pressures have been investigated by several workers. In order to facilitate
calculation, however, particular forms for the elastic strain-energy function were assumed.
For example, in a recent study by Chung et al. (1986), a detailed investigation was made
for spheres and cylinders composed ofan elastic foam rubber material described by a strain
energy function proposed by Blatz and Ko (1962). In the present note we show that for
spheres and cylinders with sufficiently thin walls the pressure-radius relation can be derived
in a simple way without reference to the specific strain-energy function. It is then shown
that for polyurethane foam rubber the results of Chung et al. (1986) are recovered, and
for illustrative purposes our results are then applied to the generalized Blatz-Ko model
discussed by Willson and Myers (1988) and investigated in detail by Myers (1988).

2. THE PRESSURIZED HOLLOW CYLINDER

Suppose that in the undeformed configuration the cylinder occupies the region
a < r < b. When a steady internal pressure p is applied at the inner wall r = a, the resulting
deformation carries the particle originally at (r, e, z) to the site (R, e, Z). We assume that
the deformation is one of axisymmetric plane strain so that

R = R(r), e = e, Z = z, (I)

where R(r) is some function whose form is yet to be determined. Then the principal stretches
A; (i = 1,2,3) are given by

).( = dR/dr, A2 = R/r, A3 = 1. (2)

If the strain-energy per unit undeformed volume is denoted by W(Ah A2' A3), then the
corresponding principal stresses t; are given by
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(3)

The true stress tensor. is diagonal with elements 'RR, 'ee, 'zz. For equilibrium, with zero
body-force, we have

(4)

Put s = (b-a)/a, u = (r-a)/(as), so that within the material u runs from °to I, and for a
thin-walled cylinder s « 1. We assume that R(r) can be expanded thus

R(r) = A(l +ocW+O(W)1]

where A, .0( are independent of r, and we assume that oc is 0(1) with respect to s.
Suppose further that the internal pressure p = ys, where y is 0(1). Since

{
-YS when r = a

'RR = ° whenr = b

then

d'RR = 1:'. + O(s).
dr a

Also

I dR oc
- - = - +O(s).
R dr a

(5)

(6)

Further, 'RR = O(s) throughout the material, so that the equation of equilibrium requires

Yree = - +O(s).
oc

(7)

Retaining only the leading terms in the approximation, we have rRR = 0, ree = r/O( when

(8)

Replacing rRR, ree by their expressions in terms of Wand the Ai' we see that the final result
for thin-walled cylinders, valid for general compressible isotropic elastic materials, can be
expressed as the pair of equations

oW a oW
OA

1
= 0, Y = A 0)'1 '

(9)

with All A2' A3 given by (8), the variable oc then serving as a parameter for the pressure
radius relation.

For polyurethane foam rubber the strain-energy function proposed by Blatz and Ko
(1962) is given by

(10)

so that (9) yields
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A/a = ~-3/4, Y/JJ = ~_~3,

in accordance with Chung et al. (1986).
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(II)

3. THE PRESSURIZED HOLLOW SPHERE

We now apply a similar analysis to the case of a hollow sphere. We work in spherical
polar coordinates so that the particle at (r, 0, </J) in the undefonned state moves to the site
(R, e, <1» after defonnation, where

R = R(r), e = 0, <I> = </J.

The principal stretches A.i are now given by

The equation of equilibrium can be written as

drRR 2 dR--+- -(rRR-ree) = 0
dr R dr

(12)

(13)

(14)

and it is readily found that in the case of a hollow thin-walled sphere our result, again valid
for general compressible isotropic elastic materials, is the pair of equations

oW (a)2oW
OA.1 = 0, Y = 2 A OA.2'

where

For polyurethane foam rubber governed by (10), this leads to

(15)

(16)

(17)

again in agreement with Chung et al. (1986).
In a recent review, Beatty (1987) has discussed the theory and application of finite

elasticity and has given similar results for the thin-walled sphere composed ofcertain Blatz
Ko materials.

4. THE GENERALIZED BLATZ-KO MODEL

To illustrate the results (9) for the cylinder and (15) and for the sphere we consider
the generalized Blatz-Ko model investigated by Willson and Myers (1988) in which

(18)

where n is some constant. It will be noted that (18) reduces to (10) in the special case n = l.
Willson and Myers (1988) and Myers (1988) have advanced reasons for imposing the
constraint n ~ 1 upon (18) so as to secure a physical response to various stress-systems
which is in accordance with our natural expectations.

Then for the thin-walled cylinder, using (9) and (18), we have
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Fig. I. The relation between applied pressure and deformed radius (both in dimensionless form)
for thin-walled cylinders composed of generalized Blatz-Ko materials. for the values of fl shown.

I, .,
~ = (1- ::c)[x+ (n- 1)(1 +cr)].
fJ.

(19)

In Fig. I we show the relation between pressure p and deformed radius A for various values
of n. For each value of n the pressure increases from zero, reaches a maximum and then
decreases, so that p/fJ.e tends to (n - I) as A/a -> :c. At this pressure maximum the value of
A/a increases only slowly with n but the maximum pressure itself is sensitive to changes in
n. Of course the curve for n = 1 depicts the result (11) for polyurethane foam rubber.

For the thin-walled sphere, (15) and (18) yield

(A)5 n (A)4- - - + (n - 1) - ':J. = 0
a C(3 a

and

Putting A':J./a = s, a new parameter, we obtain the simpler forms

(20)

(21)

(22)

In Fig. 2 the pressure-radius relation is shown, again for various values of n. Along any
one curve, corresponding to a particular choice of n. the parameter s starts from the value
unity and decreases to zero. The pressure increases from zero, attains a maximum, and this
time tends to zero as A/a -> 00. The curve n = 1 corresponds to the result (17).
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Fig. 2. The relation between applied pressure and deformed radius (both in dimensionless form)
for thin-walled spheres composed of generalized Blatz-Ko materials, for the values of n shown.
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In summary, the results (9), (15) obtained here afford especially simple parametrized
expressions for the pressure-radius relation for thin-walled cylinders and spheres under the
action of steady internal pressure.
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